676 research outputs found

    Process model comparison based on cophenetic distance

    Get PDF
    The automated comparison of process models has received increasing attention in the last decade, due to the growing existence of process models and repositories, and the consequent need to assess similarities between the underlying processes. Current techniques for process model comparison are either structural (based on graph edit distances), or behavioural (through activity profiles or the analysis of the execution semantics). Accordingly, there is a gap between the quality of the information provided by these two families, i.e., structural techniques may be fast but inaccurate, whilst behavioural are accurate but complex. In this paper we present a novel technique, that is based on a well-known technique to compare labeled trees through the notion of Cophenetic distance. The technique lays between the two families of methods for comparing a process model: it has an structural nature, but can provide accurate information on the differences/similarities of two process models. The experimental evaluation on various benchmarks sets are reported, that position the proposed technique as a valuable tool for process model comparison.Peer ReviewedPostprint (author's final draft

    Saber: window-based hybrid stream processing for heterogeneous architectures

    Get PDF
    Modern servers have become heterogeneous, often combining multicore CPUs with many-core GPGPUs. Such heterogeneous architectures have the potential to improve the performance of data-intensive stream processing applications, but they are not supported by current relational stream processing engines. For an engine to exploit a heterogeneous architecture, it must execute streaming SQL queries with sufficient data-parallelism to fully utilise all available heterogeneous processors, and decide how to use each in the most effective way. It must do this while respecting the semantics of streaming SQL queries, in particular with regard to window handling. We describe SABER, a hybrid high-performance relational stream processing engine for CPUs and GPGPUs. SABER executes windowbased streaming SQL queries in a data-parallel fashion using all available CPU and GPGPU cores. Instead of statically assigning query operators to heterogeneous processors, SABER employs a new adaptive heterogeneous lookahead scheduling strategy, which increases the share of queries executing on the processor that yields the highest performance. To hide data movement costs, SABER pipelines the transfer of stream data between different memory types and the CPU/GPGPU. Our experimental comparison against state-ofthe-art engines shows that SABER increases processing throughput while maintaining low latency for a wide range of streaming SQL queries with small and large windows sizes

    Opinion formation models based on game theory

    Get PDF
    A way to simulate the basic interactions between two individuals with different opinions, in the context of strategic game theory, is proposed. Various games are considered, which produce different kinds of opinion formation dynamics. First, by assuming that all individuals (players) are equals, we obtain the bounded confidence model of continuous opinion dynamics proposed by Deffuant et al. In such a model a tolerance threshold is defined, such that individuals with difference in opinion larger than the threshold can not interact. Then, we consider that the individuals have different inclinations to change opinion and different abilities in convincing the others. In this way, we obtain the so-called ``Stubborn individuals and Orators'' (SO) model, a generalization of the Deffuant et al. model, in which the threshold tolerance is different for every couple of individuals. We explore, by numerical simulations, the dynamics of the SO model, and we propose further generalizations that can be implemented.Comment: 18 pages, 4 figure

    Biological CO2-Methanation: an Approach to Standardization

    Get PDF
    Power-to-Methane as one part of Power-to-Gas has been recognized globally as one of the key elements for the transition towards a sustainable energy system. While plants that produce methane catalytically have been in operation for a long time, biological methanation has just reached industrial pilot scale and near-term commercial application. The growing importance of the biological method is reflected by an increasing number of scientific articles describing novel approaches to improve this technology. However, these studies are difficult to compare because they lack a coherent nomenclature. In this article, we present a comprehensive set of parameters allowing the characterization and comparison of various biological methanation processes. To identify relevant parameters needed for a proper description of this technology, we summarized existing literature and defined system boundaries for Power-to-Methane process steps. On this basis, we derive system parameters providing information on the methanation system, its performance, the biology and cost aspects. As a result, three different standards are provided as a blueprint matrix for use in academia and industry applicable to both, biological and catalytic methanation. Hence, this review attempts to set the standards for a comprehensive description of biological and chemical methanation processes

    Account of Different Views in Dynamic Choice Processes

    Get PDF
    Series: Discussion Papers of the Institute for Economic Geography and GIScienc

    Effects of Mass Media and Cultural Drift in a Model for Social Influence

    Full text link
    In the context of an extension of Axelrod's model for social influence, we study the interplay and competition between the cultural drift, represented as random perturbations, and mass media, introduced by means of an external homogeneous field. Unlike previous studies [J. C. Gonz\'alez-Avella {\it et al}, Phys. Rev. E {\bf 72}, 065102(R) (2005)], the mass media coupling proposed here is capable of affecting the cultural traits of any individual in the society, including those who do not share any features with the external message. A noise-driven transition is found: for large noise rates, both the ordered (culturally polarized) phase and the disordered (culturally fragmented) phase are observed, while, for lower noise rates, the ordered phase prevails. In the former case, the external field is found to induce cultural ordering, a behavior opposite to that reported in previous studies using a different prescription for the mass media interaction. We compare the predictions of this model to statistical data measuring the impact of a mass media vasectomy promotion campaign in Brazil.Comment: 10 pages, 3 figures; minor changes; added references. To appear in IJMP

    Volatility clustering and scaling for financial time series due to attractor bubbling

    Full text link
    A microscopic model of financial markets is considered, consisting of many interacting agents (spins) with global coupling and discrete-time thermal bath dynamics, similar to random Ising systems. The interactions between agents change randomly in time. In the thermodynamic limit the obtained time series of price returns show chaotic bursts resulting from the emergence of attractor bubbling or on-off intermittency, resembling the empirical financial time series with volatility clustering. For a proper choice of the model parameters the probability distributions of returns exhibit power-law tails with scaling exponents close to the empirical ones.Comment: For related publications see http://www.helbing.or

    Opinion dynamics: rise and fall of political parties

    Full text link
    We analyze the evolution of political organizations using a model in which agents change their opinions via two competing mechanisms. Two agents may interact and reach consensus, and additionally, individual agents may spontaneously change their opinions by a random, diffusive process. We find three distinct possibilities. For strong diffusion, the distribution of opinions is uniform and no political organizations (parties) are formed. For weak diffusion, parties do form and furthermore, the political landscape continually evolves as small parties merge into larger ones. Without diffusion, a pattern develops: parties have the same size and they possess equal niches. These phenomena are analyzed using pattern formation and scaling techniques.Comment: 5 pages, 5 figure

    Exact decoherence to pointer states in free open quantum systems is universal

    Full text link
    In this paper it is shown that exact decoherence to minimal uncertainty Gaussian pointer states is generic for free quantum particles coupled to a heat bath. More specifically, the paper is concerned with damped free particles linearly coupled under product initial conditions to a heat bath at arbitrary temperature, with arbitrary coupling strength and spectral densities covering the Ohmic, subohmic, and supraohmic regime. Then it is true that there exists a time t_c such that for times t>t_c the state can always be exactly represented as a mixture (convex combination) of particular minimal uncertainty Gaussian states, regardless of and independent from the initial state. This exact `localisation' is hence not a feature specific to high temperatures and weak damping limit, but is rather a generic property of damped free particles.Comment: 4 pages, 1 figur
    corecore